
The Shaman Engines
Technical Design Document

Hammertank Games
Tommy A. Brosman IV, Technical Director

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 1 of 44

Table of Contents

Major Revision Summary
Engine Summ ary
Core Modules
Game Modules
Common Objects
The Gameloop
The Scenegraph
Coding Standards
Library and Pre-Built Tools
Final Game Loop and Module List
Getting WxWidgets To Work
Bibliography

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 2 of 44

Major Revision Summary
August 26, 2009 – Tommy Brosman
Created initial document, blocked out the sections.

August 28, 2009 – Tommy Brosman
Revised engine summary.

September 2, 2009 – Tommy Brosman
Added more module descriptions.

September 7, 2009 – Tommy Brosman
Added coding standards. Started the section on the scenegraph.

September 10, 2009 – Tommy Brosman
Redesigned the way the scenegraph and ObjectManager work based on input from Chris Peters. Added
SoundManager.

September 11, 2009 – Tommy Brosman
Added the rest of the module descriptions.

September 14, 2009 – Tommy Brosman
Added in a diagram of how bone hierarchies work, added a few more bits to the coding standards.
Added the section on the GameLoop. Also added a table of contents and a footer (for legal purposes).

September 25, 2009 – Tommy Brosman
Added in the Tools and Pre-Built Libraries section.

October 3, 2009 – Tommy Brosman
Added versions for all tools and libraries.

October 30, 2009 – Tommy Brosman
Added info about SOIL in the tools and libraries section.

November 13, 2009 – Tommy Brosman
Added Alex's “Getting WxWidgets To Work” section.

May 9, 2010 – Tommy Brosman
Updated the tools/libraries list to reflect changes made up until our Gold build. Added the final
gameloop/module list section. Updated the table of contents.

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 3 of 44

Engine Summary

Statement of Purpose

“The Shaman Engines” is a fast-paced mech shooter with high physics, animation, and
graphical requirements. Like most modern games, its engine attempts to maximize efficiency by using
multiple hardware threads. However, since the resources devoted to the game are somewhat limited
(number of team members, development time, budget), the codebase must be approachable and easy to
work with.

Two Common Parallel Architectures

There are two major approaches to multithreaded game engines that are commonly used: the
synchronous parallel model and the asynchronous parallel model [1]. The synchronous model has the
advantage of being easy to understand, but it can only make a few major systems parallel. Basically, the
engine branches to perform a few parallel tasks, then rejoins when it renders the results. No message
system is required, and minimal locking is required since the modules are separated by concern,
minimizing cross-cutting aspects.

The second model is based on message passing and update caching. The modules run in
parallel, passing messages and storing update results in a cache without directly manipulating game
objects. The main thread (usually the render thread) gets the latest cached result, applies it to the game
objects, then renders. This approach is very non-intuitive and requires much agreement in terms of the
messaging interface. However, it is much faster than the synchronous parallel model. Assuming that the
modules are completely separate, virtually no locking is required.

Our Concurrency Model

For this engine, I propose a hybrid model. A set modules referred to as Core Modules make up a
set of synchronized modules, with semaphores protecting access to shared data. The Core Modules
hold the game objects, contain functions for launching worker threads, and other basic tasks. A second
set of modules, the Game Modules, handle the game-specific tasks of the engine. Things like physics
updates, collision updates, inverse kinematic solving, and graphics are all handled by these modules.
The game modules are never accessed directly, instead processing a set of messages (once an update
function is called). Because of this, they require little synchronization. By partitioning the game engine
into synchronous and asynchronous sections, modules requiring more resources can operate on their
own threads in an intuitive manner.

Further, our modular division of the various tasks in the game engine leads to high granularity
and minimal cross-cutting between the high-risk concerns. This model lends itself to unit testing, which
when applied properly, ultimately minimizes development time. The message system allows for
iterative development to take place with very few modifications to the test plans.

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 4 of 44

Architecture Overview

Game Modules cannot be directly accessed, with the exception of their Update() function. They can
directly access Core Modules as well as Utilities and libraries.

Core Modules can be directly accessed, and are highly synchronized. Usually they contain shared data
used by other modules.

Utilities and Libraries are considered stateless entities, and require no synchronization.

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 5 of 44

Core Modules

System

Todo
 System needs to manage worker threads, maintain threadpool. Threads are no longer per-module.

Responsibilities
 Manages threads
 Used for debugging
 Handles errors (instead of exceptions)
 Used when reading/writing files

Methods/Attributes
 public:
 void WriteDebugMsg(string msg);
 // asynch, bypasses mutex, writing synch
 void ThrowError(string msg);
 void KillAllThreads();
 void KillModuleThreads(Module::Type moduleType);

 // dumps an object as a set of bytes
 template<typename T> vector<Byte> DumpObject<T>(T *obj);
 vector<string> ViewDebugMessages();

 private:
 Semaphore systemSem;
 multimap<Module::Type, Thread> threads;
 vector<string> debugMessages;
 bool debugOn;

Interactions
 ResourceManager and other modules needing file I/O will go through System
 All other modules can use System for error handling
 System can access the EventManager log
 LuaManager uses System for saving stackdumps/etc

Test Plan Outline

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 6 of 44

 Tests for thread creation/joining
 Create thread stress test
 Kill thread stress test
 Tests with forced race conditions for all methods
 Trace system semaphore, make sure it's creating expected results
 Tests for error handling system
 Do certain errors require different actions?
 If so, should the ThrowError call be extended for more parameters?
 Test to compare output of DumpObject against other dump methods

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 7 of 44

ObjectManager

Responsibilities
 holds the camera
 holds objects
 synchronizes object access

Methods/Attributes
 public:
 Update(); // unused
 Camera& GetCamera(); // synchronized if needed
 GameObject* GetRoot(); // returns objectList["ROOT"]
 // returns objectList[objName]
 GameObject* GetObject(std::string objName);
 // get the whole game object list at once
 unordered_map<GameObject *> GetGameObjectList();
 // adds the object by its name
 void AddObject(GameObject *obj);
 // deletes an object by its name, the removes references to it
 void DeleteObject(std::string objName);

 // accessors for other objects would go here (full-list accessors)

 private:
 Camera camera;
 // where the objects are actually stored
 unordered_map<std::string, GameObject*> objectList;
 // lists of static objects that are not game objects
 std::vector<Light> lightList;
 std::vector<LevelObject> levelObjectList;

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 8 of 44

 // kept here, updated by the InterfaceManager, drawn by Graphics
 std::vector<InterfaceObject *> interfaceObjectList;

Interactions
 Accessed by almost all game modules, but usually for short periods of time

Test Plan Outline
 Save and load for all objects contained
 compare results before/after load

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 9 of 44

InputManager

Responsibilities
 Sets up functionality for input polling.
 Holds callbacks for input
 Holds and updates keystates
 Checks to see in input devices are still connected

Methods/Attributes
 public:
 void UpdateMouse();
 // the input here is a GLFW enum
 void KeyInput(int key, int state);
 // the input here is a Key enum
 bool GetKey(Key key);
 bool GetTriggerKey(Key key);
 Vector GetMousePos();

Interactions
 Accessed by GameLogic directly
 Accessed by InterfaceManager directly
 Accessed by LuaManager directly

Test Plan Outline
 Test when keyboard and mouse are not present // does game recognize
 Test to make sure that input is being detected properly for both normal and triggered keys
 Test mouse in different resolutions

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 10 of 44

EventManager

Other Objects
 CLIENT_ID - probably an unsigned int
 Message (defined in objects)

Responsibilities
 store events that can be pushed or polled
 synchronizing event publishing
 registering/unregistering listeners and senders
 locks everything on register/unregister; these are strictly synchronus

Methods/Attributes
 public:
 // %strict_synch
 // registers an object and generates an outgoing queue for that object
 CLIENT_ID RegisterObject(std::string objName);

 // %strict_synch
 // unregisters an object and removes its outgoing queue for that object
 void UnregisterObject(CLIENT_ID id);

 // %partial_synch: inputQueue
 // %function_sync
 // publishes a message to the inputQueue
 void Publish(Message msg);

 // %partial_synch: inputQueue, outputQueues
 // %function_sync
 // if the inputQueue is not empty, publish all messages to the outputQueues
 // according to their recipient ID
 void Update();

 // %partial_synch: outputQueues[recieveID]
 // get the number of messages in the queue for a specific client
 unsigned GetMessageCount(CLIENT_ID recieveID);

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 11 of 44

 // %partial_synch: outputQueues[recieveID]
 // get a single message, causes an error if there are no messages in the queue
 Message PollMessage(CLIENT_ID recieveID);

 private:
 deque<Message> inputQueue;
 map<CLIENT_ID, vector<Message> > outputQueues; // holds all the output queues
 bimap<CLIENT_ID, string> nameTable; // keeps object names around for debugging

Interactions
 Game Modules send and receive messages through the EventManager to communicate

Test Plan Outline
 Speed test for publishing a message
 Speed test for polling a message
 Stress test for publishing as many messages as possible through multiple senders
 Stress test for registration functions
 Stress test with multiple objects polling/publishing in parallel
 Test of message system integrity for all speed/stress tests
 does the data received match the data sent?

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 12 of 44

ResourceManager

Todo
 More detail on what kind of resources the ResourceManager handles, how it parses them after
opening the file through the system.

Responsibilities
 Loading resources form input stream or file.
 Caching resources for later so that secondary calls return same instance.

Methods/Attributes
 LoadResource // gets resource from stream or file unless already exists, then
 // sends a message back to the requester when loaded (async)
 GetResourceHandle // gets a resource handle, loads the resource if not in memory
 ReleaseResourceHandle // frees current reference but doesn't free memory
 DeleteResource // only deletes the resource if there are no
 GetPointerFromHandle // gets the actual object from the Handle

Interactions
 Game Modules (usually GameLogic) call LoadResource to load a resource asynchronously.
 Game Modules call GetPointerFromHandle read only
 Game Modules call ReleaseResource to not reference it anymore.
 The ResourceManager does file i/o through System
 The ResourceManager sends creation events to the GameLogic

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 13 of 44

Test Plan Outline
 Stress test a lot of resources being loaded and many object using the same resource.
 Try and Delete the pointer that is returned to the Module and make sure it doesn't fail.
 Try and get resources that don't exist and make sure ResourceManager handles appropriately.

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 14 of 44

Game Modules

SoundManager

Implementation Notes
 using FMOD, and using the C interface instead of the C++ interface

Responsibilities
 manage channels (done through fmod priorities)
 play, pause, and stop sounds
 volume control

Objects Used
 //sound clip
 //a new instance of the sound that has a position, currently playing sounds
 //Fmod handles master channel volume and priorities
 Clip(Handle of sound, Handle of parent object)

Methods/Attributes
 public:
 void Update(void);
 void Add(Clip);
 void Remove(Clip);
 void SetVolume(int Volume);
 int GetVolume();
 private:
 vector<Clip> clips; //instances of our currently playing sounds
 float masterVolume; //master volume, between 0 and 1
 //volume group, System, Voice, SFX, or Music
 ChannelGroup[4] channelGroups;
 //real volume = masterVolume * groupVolume
 float[4] groupVolume;

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 15 of 44

Interactions
 ObjectManager - calls directly to get position of sound source
 GameLogic - sends messages to change music track and play sfx
 ResourceManager - calls directly to create a new instance of a sound

Test Plan Outline
 Stress Test -play more sounds than we have channels
 Stress Test -attempt to play many streaming sounds at once
 Configuration Test -stress test with different numbers of
 hardware/software channels

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 16 of 44

GameLogic

Responsibilities
 Controls the logic and flow of the game
 Polls input from the InputManager and applies actions by sending appropriate messages
 Directly manipulates objects based on game state/input

Methods/Attributes
 public:
 void Update();
 private:
 // lots of game-specific functionality in here

Interactions
 Sends spawn/move/destroy widget events to the InterfaceManager
 Gets state changes from the InterfaceManager (object clicked/dragged/etc)
 Gets messages generated by scripts from the LuaManager
 Calls timing, debug, and other types of functions from System
 Manipulates GameObjects directly in the ObjectManager
 Calls functions in the ResourceManager when constructing objects (normally done from factories)
 Gets load finished events from the ResourceManager
 Gets collision events from the CollisionManager
 Sends messages to Graphics for constructing effects and adding them to the scenegraph

Test Plan Outline
 Make the AI play against the AI to test (most of) the game logic automatically

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 17 of 44

BehaviorManager

Responsibilities
 Chooses which objects to run AI on
 Manages swarms (stupid squads that share a worldState and mirror each other's actions)
 Sets AI type
 Keeps track of game state
 Does A* calculations
 Calculates passability/moveablility

Objects Used
 //property of the world
 WorldProperty(enum KeySymbol property, union value 4 byte value)
 //world state
 typedef worldProperty* worldState
 //Goal
 Goal(enum GoalType goal, worldState goal state, int number of conditions, float
priority)
 //Actions
 Action(enum ActionType action, float cost, worldState preconditions, worldState
effects, int number preconditions, int
number effects)
 //checks any precondition not in worldState
 bool checkProceduralPreconditions();
 void Activate(); //does action and applies effects to world state
 //Behavior
 Behavior(WorldState, vector<actions>, vector<goals>)
 void Update();
 //FSM containing two states, (move to node) and (animate)

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 18 of 44

Methods/Attributes
 public:
 void Update(void);
 void SetPriorities();

 private:
 unordered map objects //a tr1 hash table storing AI type, Behavior, and other
components for aiEntities

Interactions
 GameLogic
 Receives game state info and AI type
 Sends win condition updates
 CollisionManager
 Getting shot
 Various procedural preconditions

Test Plan Outline
 Stress Test - how much AI can we run
 Stress Test - swarms
 How many swarms?
 How many per swarm?
 Comparative - Is it even faster than non-swarm AI?
 Stress Test - too many actions
 Comparative - many preconditions, few preconditions
 Stress Test - too many goals
 Helper tags - draw basic Behavior info above aiEntities

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 19 of 44

LuaManager

Responsibilities
 holds the Lua state
 contains some debugging functionality

Methods/Attributes
 public:
 void Update(); // unused, part of base module functionality though
 private:
 lua_Lstate *Lstate;

Interactions
 Calls functions in the Core Modules directly (using glue functions built with SwIG)
 Sends/recieves messages to/from Game Modules
 Recieves "run function" messages from modules
 Uses the System module directly to load .lua files into memory

Test Plan Outline
 attempt to call Lua functions from GameLogic
 attempt to call game module functions from a Lua function
 attempt to create and pass objects between Lua and C++ to make sure SWIG is working correctly

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 20 of 44

Graphics

Effect class
 can be a light, particle system, or shader
 lights refer to light objects in ObjectList

Responsibilities
 render models
 render particles/effects
 manage OpenGL state changes (keep track of them)
 manage shaders (Effects)
 render interface buffer

Methods/Attributes
 public:
 //Updates OpenGL and calls the Render functions on non occluded objects
 Update(???);
 private:
 RenderModels(???); //Renders objects and lights
 RenderEffects(???); //Renders particle effects and other effects
 RenderInterface(???); //Renders the interface and hud

 List of OpenGL States and their status;
 List of Shaders;

Interactions
 ObjectManager

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 21 of 44

Test Plan Outline
 Stress tests for
 maximum number of effects
 complex models

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 22 of 44

Physics

Responsibilities
 integrators
 constraint solver
 collision resolution

Methods/Attributes
 public:
 Update();
 private:
 ResolveCollisions();
 // the part that handles constraints, motors, etc
 // fills the force cache
 CalculateForces();
 IntegrateForces();
 IntegrateVelocity();

Interactions
 Gets CollisionEvents from the CollisionManager
 Updates the PhysicsComponent on the GameObjects

Test Plan Outline
 Speed and stress tests for
 collision solving
 constraint solving
 integrators
 Interactive tests for collision
 irregular models
 many/few polys

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 23 of 44

 inconsistently sized polys/regions
 concave/convex models
 Integrator accuracy tests
 output to gnuplot (use existing testbed)
 check against falling with drag, linear ODE, and oscillating 2nd order ODE
 check equations with explicit spacial dependencies
 check equations with explicit time dependencies
 Constraint solving test
 limbs
 trees of objects (a hand with fingers for example)
 check for penetration during solving, use it to guage accuracy
 interactive mixed physics tests
 constrained systems of irregular objects colliding

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 24 of 44

CollisionManager

Responsibilities
 Holds a list of collisions with times attached
 Possibly per-frame, though caching older collisons might make sense
 Collision events are generated, but not resolved through the CollisionManager
 Collisions are resolved by Physics/etc, and marked resolved/processed
 Each collidable object has a CollisionComp with different levels of collision geometry
 The collision geometry might be updated by the CollisionManager

Methods/Attributes
 public:
 void Update();
 // synchronized accessors
 std::vector<CollisionEvent> GetCollisions();
 std::vector<CollisionEvent> GetCollisionCache();

 private:
 void BroadPhase();
 void NarrowPhase();
 // all previous collisions from the last frame with their resolution info
 std::vector<CollisionEvent> collisionCache;
 // collision events generated by the NarrowPhase
 std::vector<CollisionEvent> collisions;

Interactions
 Physics accesses the CollisionManager when updating
 GameLogic may check to see if a bullet hit something, etc when updating
 CollisionManager accesses both the ObjectManager and the ResourceManager
 gets both collision and model geometry

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 25 of 44

Test Plan Outline
 Test collision geometry generation
 Test convex object collisions
 Stress test for lots of different objects colliding
 Test for objects with large triangles colliding with objects that have small triangles

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 26 of 44

InterfaceManager

Responsibilities
 Update interface
 Handles the interaction
 Handles and creates the gui

 Update
 Read events
 Instantiate objects
 Check objects in the graph for clicks/button presses
 Modify the GUI based on input (open menus, etc)
 Send events generated by GUI interactions
 Render the GUI to a texture (done inside of Interface, doesn't use Graphics
 module)

Methods/Attributes
 public:
 void Update(void);

 // Creates a interface object for the gui which are handled by the object
 // manager
 void CreateInterfaceObject(objType type);

Interactions
 Takes spawn/move/destroy widget events from GameLogic

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 27 of 44

 Sends state changes to GameLogic
 Accesses the InputManager
 Creates interface objects that the ObjectManager handles

Test Plan Outline
 Test text input
 random input stress test
 Test GUI
 focus stress test
 add/remove child stress test
 child depth stress test

 // Although the ObjectManager probably does this
 Test interface object creation/destruction

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 28 of 44

AnimationManager

Responsibilities
 Uses the Animation component of an object like a state machine
 Animation component is attached to top level object and holds the bones for an object
 Updates the animation of a bone system (articulates joints, etc) based on keyframes
 Possibly solves inverse kinematics if not using keyframes
 Applies animation updates either using the physics module, or directly

Methods/Attributes
 public:
 void Update();

 private:
 void GetAnimationUpdate();
 void ApplyAnimation();

Interactions
 GameLogic and BehaviorManager send state change messages to the AnimationManager
 the AnimationManager modifies the AnimationComponent's state based on its messages
 AnimationManager launches threads from System
 AnimationManager uses the AnimationComponent on GameObjects as a state machine
 the component also holds the bones, their mappings, the keyframes, and the matrix buffer

Test Plan Outline
 Tests for different animations
 Tests for keyframing
 Tests for whatever keyframing mechanism is used
 Tests for properly importing keyframes from .fbx files (this is a ResourceManager test)

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 29 of 44

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 30 of 44

Common Objects

GameObject

note on HANDLE:
 is a string for now

Methods/Attributes
 Quaternion rotation;
 Vector position;
 unordered_map<std::string, Component> components;

Component Types
 collision information
 model (holds HANDLE to resource)
 physics (holds velocity/etc)

Test Plan Outline
 Creation/deletion stress tests with memory leak checking

Factory (abstract)

note on HANDLE:
 is a string for now

Responsibilities
 loads an xml file through System
 xml files = resources? If so, load through ResourceManager
 using ticpp parses the xml into an object
 GameObjects factory creates objects and puts them into the ObjectManager
 has an interface that can be called by lua scripts
 Factory also makes sure everything has a unique name (at least for GameObjects)
 some factories may call other factories
 component factory
 patterns are lua scripts

Methods/Attributes

GameObjectFactory
 public:
 HANDLE CreateGameObject(std::string script);
 private:

Interactions
 calls other factories for different components
 calls scripts from the LuaManager

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 31 of 44

 called by GameLogic
 adds things to the ObjectManager in some cases

Test Plan Outline
 stress test from multiple threads
 have a way to save the ObjectManager so that results of running scripts can be compared
 object creation/destruction: memory leak check

Module (abstract template)

Responsibilities
 is inherited by all modules
 contains functions for registering itself with the EventManager
 is also a singleton interface

Methods/Attributes

class Module (is a template class)
 public:
 T& Instance();
 virtual void Init();
 virtual void Update();
 virtual void Kill();
 protected:
 void RegisterWith(EventManager& eventManager, std::string moduleName);
 T instance;

Interactions
 Calls a registration function on the EventManager if needed (ex. EventManager won't register with
EventManager)

Test Plan Outline
 no need for testing

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 32 of 44

The Gameloop

The basic gameloop has a simple structure: update core modules, update background game
modules, update non-rendering game modules, update rendering game module.

GameLoop()
 // core modules
 System.Update() // update any timing/debug/etc stuff
 EventManager.Update() // the update here is largely unused
 InputManager.Update() // need to know the current keystates
 ResourceManager.Update() // sends/receives load status msgs
 ObjectManager.Update() // processes any messages
 CollisionManager.Update() // needed for proper physics/etc

 // background game modules
 LuaManager.Update() // Lua runs through interrupts
 SoundManager.Update() // sound runs in the background
 InterfaceManager.Update() // draws to texture, generates logic
 GameLogic.Update() // reacts to logic, sends messages
 BehaviorManager.Update() // reacts to messages
 AnimationManager.Update() // anim states altered by BehaviorManager
 Physics.Update() // corrects animation
 Graphics.Update() // finally, the scene is rendered

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 33 of 44

The Scenegraph

Scene “Graph”

Our game does not require a true scenegraph, but refers to the separate object lists as the
scenegraph to prevent confusion with individual lists. GameObjects are any object that will be moving
in the scene and may have components. LevelObjects are part of the level, and typically have some sort
of visibility information (terrain is organized in a BSP tree, etc). The Light list and the Camera object
are used mainly by the Graphics module with some exceptions.

Orientation Representation

To simplify calculations while rendering, collision detection, physics, and any other stage of the
gameloop that requires calculating transformations, the position of an object relative to the world is
always represented using a single rigid body transformation. All scaling is done at design time to limit
all orientation to translations and rotations only (a smaller, more manageable subset of generalized
affine transformations [2]).

The same orientation representation is also used in bone hierarchies. The rotation is stored as a
quaternion, while the translation is stored as a vector. When it comes time to calculate the bone buffer,
the quaternion vector pairs are converted to matrices.

Spatial Partitioning

Since most of our game takes place on the ground, spatial partitioning for GameObjects will use
a quad tree. To optimize level rendering, a BSP tree will be used for the level itself, and will most likely
be calculated at design time in some sort of tool.

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 34 of 44

Hierarchical Animation

Animation will use bones, and will not be done using the scenegraph hierarchy. Instead, a
hierarchy of bones will be used to manipulate a mesh. The bones will most likely reside in the
Animation component for the GameObject they operate on. Each bone will have the same translation
vector, quaternion scheme that the scenegraph objects use. In terms of our game, typically each vertex
will have influence from only one bone.

To save time, the resulting matrices are cached. Each cached matrix for a given bone represents
the bone-to-modelspace transformation instead of the bone-to-parent transformation given by the
quaternion-vector pair on the bone itself. These are updated if an object's limbs are moved during a
gameloop (a flag is set, stating that the matrix buffer has out of date information). During render time,
the skin is applied using the vertex shader. The same matrices are also used during collision detection,
AI, and other things requiring world coordinates.

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 35 of 44

Libraries and Pre-Built Tools

Game Libraries

OpenGL Rendering.
Version: OpenGL 2.0 with GLSL shader model 2.0 (at minimum, optimized for 4.0)

GLEW OpenGL extension management.
Version: glew 1.5.1

GLFW Originally used for window management/input, now only used for the high-res timer.
Version: glfw 2.6

SDL Window management, input, resolution changing.
Version: SDL 1.2.14

FMOD Sound.
Version: fmod 3.75

Lua Scripting.
Version: Lua 5.1.4 (August 2008)

Boost Containers, synchronization (threads, hash tables, etc).
Version: Boost 1.37.0 or later (up to Boost 1.40.0 works so far)

TinyXML XML serialization.
Version: TinyXML 2.5.3

SOIL Image/texture loading.
Version: July 7, 2008 release. http://www.lonesock.net/soil.html

Tool Libraries

Autodesk FBX SDK Used for building tools to generate model/scene files from FBX files.
Version: FBX SDK 2010.0 and 2010.2

wxWidgets GUI for tools.
Version: wxWidgets 2.8.10

Visual Leak Detector Better output for Visual Studio's built-in leak checking. Used in Debug.
Version: VLD 1.0 (August 5, 2005)

Tools

SWIG Generating Lua glue functions.

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 36 of 44

Version: swig 1.3.36

Autodesk 3DS MAX Animation and modelling.
Version: Autodesk 3DS MAX 2010 (12.0)

GIMP, Photoshop Textures, logos, etc.
Version: GIMP 2.0 and above. Photoshop Elements.

MS Visual Studio 2005 IDE/compiler.
Version: Microsoft Visual Studio 2005 (IDE Version 8.0.50727.762)
Command line compiler version 14.00.50727.762

Cygwin Bash Automation for various tasks. Mainly used for building the installer.
Version: GNU bash, version 3.2.x or later for Cygwin

NSIS The installer compiler.
Version: Nullsoft Scriptable Install System 2.24

AMD CodeAnalyst Used to identify performance bottlenecks.
Version: AMD CodeAnalyst version 2.9

Old Libraries and Tools (not used anymore)

TiCpp XML serialization. Dropped because it is broken under MSVC 2005.
Version: ticpp 2.5.3

Cygwin Make Scripted builds. Dropped after Makefiles were not properly maintained.
Version: GNU Make 3.81 or later for Cygwin

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 37 of 44

Final Game Loop and Module List

Module List

Core Modules
System
EventManager
InputManager
ResourceManager
CollisionManager
ObjectManager

Game Modules
AnimationManager
Physics
Graphics
InterfaceManager*
SoundManager*
GameLogic*
BehaviorManager*
SpawnManager*
LuaManager*

* denotes Game Modules with extra functions exposed that are used exclusively by game logic and
behavior code, or by calls from objects explicitly related to its functionality. No * denotes a “pure”
Game Module interface, exposing only Init(), Update(), and Kill() functions.

Main

The following functions run in parallel, then wait until all three threads reach the barrier.

void RunPhysics()
{
 while(System::Instance().isRunning)
 {
 if(!System::Instance().Pause())
 { Physics::Instance().Update(); }

 updateSyncBarrier.wait();
 }
}

void RunCollisionManager()
{
 while(System::Instance().isRunning)
 {
 if(!System::Instance().Pause())
 { CollisionManager::Instance().Update(); }

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 38 of 44

 updateSyncBarrier.wait();
 }
}

void GameLoop()
{
 while(System::Instance().isRunning)
 {
 System::Instance().BeginFrame();

 // core modules
 System::Instance().Update();
 EventManager::Instance().Update();
 InputManager::Instance().Update();
 ResourceManager::Instance().Update();
 ObjectManager::Instance().Update();

 // game modules
 LuaManager::Instance().Update();
 InterfaceManager::Instance().Update();
 SoundManager::Instance().Update();
 GameLogic::Instance().Update();

 if(System::Instance().Pause() == false)
 {
 BehaviorManager::Instance().Update();
 AnimationManager::Instance().Update();
 SpawnManager::Instance().Update();
 }

 // graphics
 Graphics::Instance().Update();

 updateSyncBarrier.wait();

 System::Instance().EndFrame();
 }
}

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 39 of 44

Getting WxWidgets To Work

Using 2.8.10 version of wxWidgets

Installed on C:

open up wxWidgets-2.8.10/build/msw/wx

In "C/C++" -> "Code Generation" use "Multi-threaded Debug (/MTd)"

Under "Build" -> "Batch Build"

Build only "Release" and "Debug" for all projects under "Configuration"

Keep rebuilding ontill all projects have been built successfully (projects can fail
to build because they sometimes use the same libraries)

To use wxWidgets in a project:
"C/C++" -> "General" -> "Additional Include Directories"

add C:\wxWidgets-2.8.10\include // Needed for general includes
add C:\wxWidgets-2.8.10\include\msvc // This is needed because setup.h is in here

for some reason

"Linker" -> "General" -> "Additional Library Directories"
add C:\wxWidgets-2.8.10\lib\vc_lib

"Linker" -> "Input" -> "Additonal Dependencies"
add comctl32.lib
add rpcrt4.lib

"Linker" -> "Input" -> "Ignore Specific Library"
add LIBC // If Compiling in Debug
add MSVCRT // If Compiling in Debug
add LIBCD // If Compiling in Debug
add LIBCMTD // If Compiling in Debug
add LIBCMT // If Compiling in Debug

You have to recompile parts of wxWidgets to get wxGLCanvas working.
In C:\wxWidgets-2.8.10\build\msw\

Open wx and rebuild wxregex after changing all #define wxUSE_GLCANVAS 0 to 1 in both setup.h

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 40 of 44

Coding Standards

Filenames
Lowercase with underscores, usually representing the library or object it contains.
Example: GameObject is in game_object.h and game_object.cpp

Type/Object Names
Enumerated types, typedef'd types, and classes are all camel-cased with the first letter capitalized.
Example: the state machine class is StateMachine
Example: the matrix class is Matrix

Functions and Function Members
Functions and function members follow the same convention as object names.
Example: GameObject::ApplyVelocity()

Data and Data Members
Data objects (class instances, variables, class members, etc) are camel-cased with the first letter
lowercase.
Example: GameObject::canRender

Preventing Duplicate Includes
Say I have a file named mesh.h in the graphics/ subdirectory. Around the header file, the following
should be added to prevent duplicate includes:

#ifndef GRAPHICS_MESH_H
#define GRAPHICS_MESH_H

// header stuff here

#endif /* GRAPHICS_MESH_H */

Using #define's instead of #pragma's gives extra information that can be used for double-checking
which files have been included. Note that the subdirectory is included in the #define. This resolves
the problem of duplicate filenames. If somehow there were a file named graphics_mesh.h in the top-
level source directory, two underscores could be used between directory and filenames (but having odd
filenames like that is bad anyway). As with .cpp files, a newline should be inserted at the end of the
file. It's an old convention, but still a good one to follow, especially if you want to look at pre-processed
output.

File Headers

Example:

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 41 of 44

/**/
/*!
@brief SLEEP Engine
@file lua_link.h
@author Tommy A. Brosman IV
@par dp email: tbrosman\@digipen.edu
@par alt email: drakoniis\@gmail.com
@date September 2, 2007

@brief
 Adapted from the LuaLink class (also by me) used in the DigiPen game
 NullSpace by Hopeless Productions.

*/
/**/

File headers are a must, so that authorship can be shown. All authors for the file should be
listed, with a new set of author/dp email/alt email tags for each. Note that the alt email is an optional
field. Also, the line length does not extend past 80 characters. In Crimson Editor, Tools->Preferences-
>Visual, "2nd column marker at" checked with its value set to 80. This is an old standard dealing with
the width of the console. Also, it makes code look pretty.

These headers should appear in both the .h and .cpp files, even if the information is the same
and only the file extension in filename is changed.

Function Headers

Example:

/**/
/*!

 Transform a point by the pre-computed matrix values (these must be computed
 first for the transformation to work).

 @param pntB
 the point to transform

 @return
 a transformed copy of the original point

*/
/**/

Use function headers as needed. Show authorship for individual functions if necessary.

Comments

Use, but don't overuse. The 80-column rule applies, so multi-line comments can be done the C++ way:

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 42 of 44

// this is the first line
// this is the second line

Or the C way:

/*
* this is the first line
* this is the second line
*/

Syntax

// comment above the code, not after

void UseAnsiBrackets()
{
 // not K&R
}

while("Use ANSI brackets everywhere")
{
 // even in loops
}

 // indent with two spaces, no tabs...
 // or cheat and use Crimson Editor to change it
 // from tabs to spaces later (what I do)

{
 SomeMenu(string _name, int _time); // in this case, it is to keep from reusing
 // a member-name as a parameter (even though
 // that is perfectly legal)
}

Cut down on variable usage, reuse functions, keep your code readable, etc. Write code that won't
require any extra explanation. Remember to put a newline at the end of both .h and .cpp files (just in
case you want to view pre-processed output, and also to keep compilers from throwing warnings).

Last but not least, ((++*no ^ --*clever), !!code)

Makefiles, Scripts

Lua scripts, Makefiles, etc should also show authorship equivalent to that shown in the C++ files.

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 43 of 44

Bibliography
[1] Mönkkönen, Ville. “Multithreaded Game Engine Architectures”.
http://www.gamasutra.com/features/20060906/monkkonen_01.shtml.

[2] Van Den Bergen, Gino. “Collision Detection In Interactive 3D Environments”.
Morgan Kaufmann Publishers, 2004. pg 20.

[3] Erleben, Sporring, Henriksen, Dohlmann. “Physics Based Animation”.
Charles River Media, Inc, 2005. pg 22.

© 2009-2010 DigiPen (USA) Corporation All Rights Reserved Page 44 of 44

http://www.gamasutra.com/features/20060906/monkkonen_01.shtml

